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Math Class 11 Chapter 1 and 2 Sets and relations and functions 

Set 

Set is a collection of well defined objects which are distinct from each other. Sets are usually 

denoted by capital letters A, B,C,… and elements are usually denoted by small letters a, b,c,… 

. 

If ‘a’ is an element of a set A, then we write a ∈ A and say ‘a’ belongs to A or ‘a’ is in A or ‘a’ 

is a member of A. If ‘a’ does not belongs to A, we write a ∉ A. 

Standard Notations 

 N : A set of natural numbers. 

 W : A set of whole numbers. 

 Z : A set of integers. 

 Z+/Z- : A set of all positive/negative integers. 

 Q : A set of all rational numbers. 

 Q+/Q- : A set of all positive/ negative rational numbers. 

 R : A set of real numbers. 

 R+/R-: A set of all positive/negative real numbers. 

 C : A set of all complex numbers. 

Methods for Describing a Set 

(i) Roster/Listing Method/Tabular Form In this method, a set is described by listing element, 

separated by commas, within braces. 

e.g., A = {a, e, i, o, u} 

(ii) Set Builder/Rule Method In this method, we write down a property or rule which gives us 

all the elements of the set by that rule. 

e.g.,A = {x : x is a vowel of English alphabets} 

Types of Sets 

1. Finite Set A set containing finite number of elements or no element. 

2. Cardinal Number of a Finite Set The number of elements in a given finite set is called 

cardinal number of finite set, denoted by n (A). 

3. Infinite Set A set containing infinite number of elements. 

4. Empty/Null/Void Set A set containing no element, it is denoted by (φ) or { }. 

5. Singleton Set A set containing a single element. 

6. Equal Sets Two sets A and B are said to be equal, if every element of A is a member of 

B and every element of B is a member of A and we write A = B. 
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7. Equivalent Sets Two sets are said to be equivalent, if they have same number of 

elements. 

If n(A) = n(B), then A and B are equivalent sets. But converse is not true. 

8. Subset and Superset Let A and B be two sets. If every element of A is an element of B, 

then A is called subset of B and B is called superset of A. Written as 

A ⊆ B or B ⊇ A 

9. Proper Subset If A is a subset of B and A ≠ B, then A is called proper subset of B and 

we write A ⊂ B. 

10. Universal Set (U) A set consisting of all possible elements which occurs under 

consideration is called a universal set. 

11. Comparable Sets Two sets A and Bare comparable, if A ⊆ B or B ⊆ A. 

12. Non-Comparable Sets For two sets A and B, if neither A ⊆ B nor B ⊆ A, then A and B 

are called non-comparable sets. 

13. Power Set (P) The set formed by all the subsets of a given set A, is called power set of 

A, denoted by P(A). 

14. Disjoint Sets Two sets A and B are called disjoint, if, A ∩ B = (φ). 

Venn Diagram 

In a Venn diagram, the universal set is represented by a rectangular region and a set is 

represented by circle or a closed geometrical figure inside the universal set. 

 

Operations on Sets 

1. Union of Sets 

The union of two sets A and B, denoted by A ∪ B is the set of all those elements, each one of 

which is either in A or in B or both in A and B. 

 

2. Intersection of Sets 
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The intersection of two sets A and B, denoted by A ∩ B, is the set of all those elements which 

are common to both A and B. 

 

If A1, A2,… , An is a finite family of sets, then their intersection is denoted by 

 

3. Complement of a Set 

If A is a set with U as universal set, then complement of a set, denoted by A’ or Ac is the set U 

– A . 

 

4. Difference of Sets 

For two sets A and B, the difference A – B is the set of all those elements of A which do not 

belong to B. 

 

5. Symmetric Difference 

For two sets A and B, symmetric difference is the set (A – B) ∪ (B – A) denoted by A Δ B. 
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Laws of Algebra of Sets 

For three sets A, B and C 

(i) Commutative Laws 

A ∩ B = B ∩ A 

A ∪ B = B ∪ A 

(ii) Associative Laws 

(A ∩ B) ∩ C = A ∩ (B ∩ C) 

(A ∪ B) ∪ C = A ∪ (B ∪ C) 

(iii) Distributive Laws 

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) 

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) 

(iv) Idempotent Laws 

A ∩ A = A 

A ∪ A = A 

(v) Identity Laws 

A ∪ Φ = A 

A ∩ U = A 

(vi) De Morgan’s Laws 

(a) (A ∩ B) ′ = A ′ ∪ B ′ 

(b) (A ∪ B) ′ = A ′ ∩ B ′ 

(c) A – (B ∩ C) = (A – B) ∩ (A- C) 

(d) A – (B ∪ C) = (A – B) ∪ ( A – C) 

(vii) (a) A – B = A ∩ B’ 

(b) B – A = B ∩ A’ 

(c) A – B = A ⇔A ∩ B= (Φ) 

http://www.ncerthelp.com/


5 | P a g e  

 

www.ncerthelp.com  (Visit for all ncert solutions in text and videos, CBSE syllabus, note and many more) 
 

(d) (A – B) ∪ B= A ∪ B 

(e) (A – B) ∩ B = (Φ) 

(f) A ∩ B ⊆ A and A ∩ B ⊆ B 

(g) A ∪ (A ∩ B)= A 

(h) A ∩ (A ∪ B)= A 

(viii) (a) (A – B) ∪ (B – A) = (A ∪ B) – (A ∩ B) 

(b) A ∩ (B – C) = (A ∩ B) – (A ∩ C) 

(c) A ∩ (B Δ C) = (A ∩ B) A (A ∩ C) 

(d) (A ∩ B) ∪ (A – B) = A 

(e) A ∪ (B – A) = (A ∪ B) 

(ix) (a) U’ = (Φ) 

(b) Φ’ = U 

(c) (A’ )’ = A 

(d) A ∩ A’ = (Φ) 

(e) A ∪ A’ = U 

(f) A ⊆ B ⇔ B’ ⊆ A’ 

Important Points to be Remembered 

 Every set is a subset of itself i.e., A ⊆ A, for any set A. 

 Empty set Φ is a subset of every set i.e., Φ ⊂ A, for any set A. 

 For any set A and its universal set U, A ⊆ U 

 If A = Φ, then power set has only one element i.e., n(P(A)) = 1 

 Power set of any set is always a non-empty set. 

Suppose A = {1, 2}, thenP(A) = {{1}, {2}, {1, 2}, Φ}.(a) A ∉ P(A) 

(b) {A} ∈ P(A) 

 (vii) If a set A has n elements, then P(A) or subset of A has 2n elements. 

 (viii) Equal sets are always equivalent but equivalent sets may not be equal. 

The set {Φ} is not a null set. It is a set containing one element Φ. 

Results on Number of Elements in Sets 

 n (A ∪ B) = n(A) + (B)- n(A ∩ B) 

 n(A ∪ B) = n(A)+ n(B), if A and B are disjoint. 

 n(A – B) = n(A) – n(A ∩ B) 

 n(A Δ B) = n(A) + n(B)- 2n(A ∩ B) 

 n(A ∪ B ∪ C)= n(A)+ n(B)+ n(C)- n(A ∩ B) – n(B ∩ C)- n(A ∩ C)+ n(A ∩ B ∩ C) 

 n (number of elements in exactly two of the sets A, B, C) = n(A ∩ B) + n(B ∩ C) + n (C 

∩ A)- 3n(A ∩ B ∩ C) 

 n (number of elements in exactly one of the sets A, B, C) = n(A) + n(B) + n(C) – 2n(A 

∩ B) – 2n(B ∩ C) – 2n(A ∩ C) + 3n(A ∩ B ∩ C) 

 n(A’ ∪ B’)= n(A ∩ B)’ = n(U) – n(A ∩ B) 
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 n(A’ ∩ B’ ) = n(A ∪ B)’ = n(U) – n(A ∪ B) 

 n(B – A) = n(B)- n(A ∩ B) 

Ordered Pair 

An ordered pair consists of two objects or elements in a given fixed order. 

Equality of Ordered Pairs Two ordered pairs (a1, b1) and (a2, b2) are equal iff a1 = a2 and b1 = 

b2. 

Cartesian Product of Sets 

For two sets A and B (non-empty sets), the set of all ordered pairs (a, b) such that a ∈ A and b 

∈ B is called Cartesian product of the sets A and’ B, denoted by A x B. 

A x B={(a,b):a ∈ A and b ∈ B} 

If there are three sets A, B, C and a ∈ A, be B and c ∈ C, then we form, an ordered triplet (a, b, 

c). The set of all ordered triplets (a, b, c) is called the cartesian product of these sets A, B and 

C. 

i.e., A x B x C = {(a,b,c):a ∈ A,b ∈ B,c ∈ C} 

Properties of Cartesian Product 

For three sets A, B and C 

  n (A x B)= n(A) n(B) 

 A x B = Φ, if either A or B is an empty set. 

 A x (B ∪ C)= (A x B) ∪ (A x C) 

 A x (B ∩ C) = (A x B) ∩ (A x C) 

 A x (B — C)= (A x B) — (A x C) 

 (A x B) ∩ (C x D)= (A ∩ C) x (B ∩ D) 

 If A ⊆ B and C ⊆ D, then (A x C) ⊂ (B x D) 

 If A ⊆ B, then A x A ⊆ (A x B) ∩ (B x A) 

 A x B = B x A ⇔ A = B 

 If either A or B is an infinite set, then A x B is an infinite set. 

 A x (B’ ∪ C’ )’ = (A x B) ∩ (A x C) 

 A x (B’ ∩ C’ )’ = (A x B) ∪ (A x C) 

 If A and B be any two non-empty sets having n elements in common, then A x B and B 

x A have n2 elements in common. 

 If ≠ B, then A x B ≠ B x A 

 If A = B, then A x B= B x A 

 If A ⊆ B, then A x C = B x C for any set C. 
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Relation 

If A and B are two non-empty sets, then a relation R from A to B is a subset of A x B. 

If R ⊆ A x B and (a, b) ∈ R, then we say that a is related to b by the relation R, written as aRb. 

Domain and Range of a Relation 

Let R be a relation from a set A to set B. Then, set of all first components or coordinates of the 

ordered pairs belonging to R is called : the domain of R, while the set of all second components 

or coordinates = of the ordered pairs belonging to R is called the range of R. 

Thus, domain of R = {a : (a , b) ∈ R} and range of R = {b : (a, b) ∈ R} 

Types of Relations 

(i) Void Relation As Φ ⊂ A x A, for any set A, so Φ is a relation on A, called the empty or 

void relation. 

(ii) Universal Relation Since, A x A ⊆ A x A, so A x A is a relation on A, called the universal 

relation. 

(iii) Identity Relation The relation IA = {(a, a) : a ∈ A} is called the identity relation on A. 

(iv) Reflexive Relation A relation R is said to be reflexive relation, if every element of A is 

related to itself. 

Thus, (a, a) ∈ R, ∀ a ∈ A = R is reflexive. 

(v) Symmetric Relation A relation R is said to be symmetric relation, iff 

(a, b) ∈ R (b, a) ∈ R,∀ a, b ∈ A 

i.e., a R b ⇒ b R a,∀ a, b ∈ A 

⇒ R is symmetric. 

(vi) Anti-Symmetric Relation A relation R is said to be anti-symmetric relation, iff 

(a, b) ∈ R and (b, a) ∈ R ⇒ a = b,∀ a, b ∈ A 

(vii) Transitive Relation A relation R is said to be transitive relation, iff (a, b) ∈ R and (b, c) 

∈ R 

⇒ (a, c) ∈ R, ∀ a, b, c ∈ A 
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(viii) Equivalence Relation A relation R is said to be an equivalence relation, if it is 

simultaneously reflexive, symmetric and transitive on A. 

(ix) Partial Order Relation A relation R is said to be a partial order relation, if it is 

simultaneously reflexive, symmetric and anti-symmetric on A. 

(x) Total Order Relation A relation R on a set A is said to be a total order relation on A, if R 

is a partial order relation on A. 

Inverse Relation 

If A and B are two non-empty sets and R be a relation from A to B, such that R = {(a, b) : a ∈ 

A, b ∈ B}, then the inverse of R, denoted by R-1 , i a relation from B to A and is defined by 

R-1 = {(b, a) : (a, b) ∈ R} 

Equivalence Classes of an Equivalence Relation 

Let R be equivalence relation in A (≠ Φ). Let a ∈ A. 

Then, the equivalence class of a denoted by [a] or {a} is defined as the set of all those points of 

A which are related to a under the relation R. 

Composition of Relation 

Let R and S be two relations from sets A to B and B to C respectively, then we can define 

relation SoR from A to C such that (a, c) ∈ So R ⇔ ∃ b ∈ B such that (a, b) ∈ R and (b, c) ∈ S. 

This relation SoR is called the composition of R and S. 

(i) RoS ≠ SoR 

(ii) (SoR)-1 = R-1oS-1 

known as reversal rule. 

Congruence Modulo m 

Let m be an arbitrary but fixed integer. Two integers a and b are said to be congruence modulo 

m, if a – b is divisible by m and we write a ≡ b (mod m). 

i.e., a ≡ b (mod m) ⇔ a – b is divisible by m. 

Important Results on Relation 

 If R and S are two equivalence relations on a set A, then R ∩ S is also on ‘equivalence 

relation on A. 
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 The union of two equivalence relations on a set is not necessarily an equivalence relation 

on the set. 

 If R is an equivalence relation on a set A, then R-1 is also an equivalence relation on A. 

 If a set A has n elements, then number of reflexive relations from A to A is 2n2 – 2 

 Let A and B be two non-empty finite sets consisting of m and n elements, respectively. 

Then, A x B consists of mn ordered pairs. So, total number of relations from A to B is 

2nm. 

Binary Operations 

Closure Property 

An operation * on a non-empty set S is said to satisfy the closure ‘ property, if 

a ∈ S, b ∈ S ⇒ a * b ∈ S, ∀ a, b ∈ S 

Also, in this case we say that S is closed for *. 

An operation * on a non-empty set S, satisfying the closure property is known as a binary 

operation. 

or 

Let S be a non-empty set. A function f from S x S to S is called a binary operation on S i.e., f : 

S x S → S is a binary operation on set S. 

Properties 

 Generally binary operations are represented by the symbols * , +, … etc., instead of 

letters figure etc. 

 Addition is a binary operation on each one of the sets N, Z, Q, R and C of natural 

numbers, integers, rationals, real and complex numbers, respectively. While addition on 

the set S of all irrationals is not a binary operation. 

 Multiplication is a binary operation on each one of the sets N, Z, Q, R and C of natural 

numbers, integers, rationals, real and complex numbers, respectively. While 

multiplication on the set S of all irrationals is not a binary operation. 

 Subtraction is a binary operation on each one of the sets Z, Q, R and C of integers, 

rationals, real and complex numbers, respectively. While subtraction on the set of 

natural numbers is not a binary operation. 

 Let S be a non-empty set and P(S) be its power set. Then, the union and intersection on 

P(S) is a binary operation. 

 Division is not a binary operation on any of the sets N, Z, Q, R and C. However, it is not 

a binary operation on the sets of all non-zero rational (real or complex) numbers. 

 Exponential operation (a, b) → ab is a binary operation on set N of natural numbers 

while it is not a binary operation on set Z of integers. 
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Types of Binary Operations 

(i) Associative Law A binary operation * on a non-empty set S is said to be associative, if (a * 

b) * c = a * (b * c), ∀ a, b, c ∈ S. 

Let R be the set of real numbers, then addition and multiplication on R satisfies the associative 

law. 

(ii) Commutative Law A binary operation * on a non-empty set S is said to be commutative, if 

a * b = b * a, ∀ a, b ∈ S. 

Addition and multiplication are commutative binary operations on Z but subtraction not a 

commutative binary operation, since 

2 — 3 ≠ 3— 2 . 

Union and intersection are commutative binary operations on the power P(S) of all subsets of 

set S. But difference of sets is not a commutative binary operation on P(S). 

(iii) Distributive Law Let * and o be two binary operations on a non-empty sets. We say that * 

is distributed over o., if 

a * (b o c)= (a * b) o (a * c), ∀ a, b, c ∈ S also called (left distribution) and (b o c) * a = (b * a) 

o (c * a), ∀ a, b, c ∈ S also called (right distribution). 

Let R be the set of all real numbers, then multiplication distributes addition on R. 

Since, a.(b + c) = a.b + a.c,∀ a, b, c ∈ R. 

(iv) Identity Element Let * be a binary operation on a non-empty set S. An element e a S, if it 

exist such that 

a * e = e * a = a, ∀ a ∈ S. 

is called an identity elements of S, with respect to *. 

For addition on R, zero is the identity elements in R. 

Since, a + 0 = 0 + a = a, ∀ a ∈ R 

For multiplication on R, 1 is the identity element in R. 

Since, a x 1 =1 x a = a,∀ a ∈ R 
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Let P (S) be the power set of a non-empty set S. Then, Φ is the identity element for union on P 

(S) as 

A ∪ Φ =Φ ∪ A = A, ∀ A ∈ P(S) 

Also, S is the identity element for intersection on P(S). 

Since, A ∩ S=A ∩ S=A, ∀ A ∈ P(S). 

For addition on N the identity element does not exist. But for multiplication on N the idenitity 

element is 1. 

(v) Inverse of an Element Let * be a binary operation on a non-empty set ‘S’ and let ‘e’ be the 

identity element. 

Let a ∈ S. we say that a-1 is invertible, if there exists an element b ∈ S such that a * b = b * a = 

e 

Also, in this case, b is called the inverse of a and we write, a-1 = b 

Addition on N has no identity element and accordingly N has no invertible element. 

Multiplication on N has 1 as the identity element and no element other than 1 is invertible. 

Let S be a finite set containing n elements. Then, the total  number of binary operations on S in 

nn2  

Let S be a finite set containing n elements. Then, the total number of commutative binary 

operation on S is n [n(n+1)/2]. 
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