Math Class 11 Chapter 1 and 2 Sets and relations and functions

Set

Set is a collection of well defined objects which are distinct from each other. Sets are usually denoted by capital letters $\mathrm{A}, \mathrm{B}, \mathrm{C}, \ldots$ and elements are usually denoted by small letters $\mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots$

If ' a ' is an element of a set A, then we write $a \in A$ and say ' a ' belongs to A or ' a ' is in A or ' a ' is a member of A. If ' a ' does not belongs to A, we write $a \notin A$.

Standard Notations

- N : A set of natural numbers.
- W : A set of whole numbers.
- Z : A set of integers.
- $\mathrm{Z}^{+} / \mathrm{Z}^{-}$: A set of all positive/negative integers.
- Q : A set of all rational numbers.
- $\mathrm{Q}^{+} / \mathrm{Q}^{-}$: A set of all positive/ negative rational numbers.
- R : A set of real numbers.
- $\mathrm{R}^{+} / \mathrm{R}^{-}$: A set of all positive/negative real numbers.
- C : A set of all complex numbers.

Methods for Describing a Set

(i) Roster/Listing Method/Tabular Form In this method, a set is described by listing element, separated by commas, within braces.
e.g., $A=\{a, e, i, o, u\}$
(ii) Set Builder/Rule Method In this method, we write down a property or rule which gives us all the elements of the set by that rule.
e.g., $\mathrm{A}=\{\mathrm{x}: \mathrm{x}$ is a vowel of English alphabets $\}$

Types of Sets

1. Finite Set A set containing finite number of elements or no element.
2. Cardinal Number of a Finite Set The number of elements in a given finite set is called cardinal number of finite set, denoted by n (A).
3. Infinite Set A set containing infinite number of elements.
4. Empty/Null/Void Set A set containing no element, it is denoted by (φ) or $\}$.
5. Singleton Set A set containing a single element.
6. Equal Sets Two sets A and B are said to be equal, if every element of A is a member of B and every element of B is a member of A and we write $A=B$.
7. Equivalent Sets Two sets are said to be equivalent, if they have same number of elements.
If $n(A)=n(B)$, then A and B are equivalent sets. But converse is not true.
8. Subset and Superset Let A and B be two sets. If every element of A is an element of B, then A is called subset of B and B is called superset of A. Written as $\mathrm{A} \subseteq \mathrm{B}$ or $\mathrm{B} \supseteq \mathrm{A}$
9. Proper Subset If A is a subset of B and $A \neq B$, then A is called proper subset of B and we write A $\subset B$.
10. Universal Set (U) A set consisting of all possible elements which occurs under consideration is called a universal set.
11. Comparable Sets Two sets A and Bare comparable, if A $\subseteq B$ or $B \subseteq A$.
12. Non-Comparable Sets For two sets A and B, if neither $A \subseteq B$ nor $B \subseteq A$, then A and B are called non-comparable sets.
13. Power Set (P) The set formed by all the subsets of a given set A, is called power set of A , denoted by $\mathrm{P}(\mathrm{A})$.
14. Disjoint Sets Two sets A and B are called disjoint, if, $A \cap B=(\varphi)$.

Venn Diagram

In a Venn diagram, the universal set is represented by a rectangular region and a set is represented by circle or a closed geometrical figure inside the universal set.

Operations on Sets

1. Union of Sets

The union of two sets A and B, denoted by $A \cup B$ is the set of all those elements, each one of which is either in A or in B or both in A and B.

2. Intersection of Sets

The intersection of two sets A and B , denoted by $\mathrm{A} \cap \mathrm{B}$, is the set of all those elements which are common to both A and B.

If $A_{1}, A_{2}, \ldots, A_{n}$ is a finite family of sets, then their intersection is denoted by

$$
\bigcap_{i=1}^{n} A_{i} \text { or } A_{1} \cap A_{2} \cap \ldots \cap A_{n}
$$

3. Complement of a Set

If A is a set with U as universal set, then complement of a set, denoted by A^{\prime} or A^{c} is the set U - A.

4. Difference of Sets

For two sets A and B, the difference $A-B$ is the set of all those elements of A which do not belong to B .

5. Symmetric Difference

For two sets A and B, symmetric difference is the set $(A-B) \cup(B-A)$ denoted by $A \Delta B$.

Laws of Algebra of Sets

For three sets A, B and C

(i) Commutative Laws

$A \cap B=B \cap A$
$A \cup B=B \cup A$
(ii) Associative Laws
$(A \cap B) \cap C=A \cap(B \cap C)$
$(A \cup B) \cup C=A \cup(B \cup C)$
(iii) Distributive Laws
$A \cap(B \cup C)=(A \cap B)$
B) $\cup(A \cap C)$
$A \cup(B \cap C)=(A \cup B)$
B) $\cap(A \cup C)$

(iv) Idempotent Laws

$\mathrm{A} \cap \mathrm{A}=\mathrm{A}$
$\mathrm{A} \cup \mathrm{A}=\mathrm{A}$
(v) Identity Laws
$\mathrm{A} \cup \Phi=\mathrm{A}$
$\mathrm{A} \cap \mathbf{U}=\mathrm{A}$
(vi) De Morgan's Laws
(a) $(\mathrm{A} \cap \mathrm{B})^{\prime}=\mathrm{A}^{\prime} \cup \mathrm{B}^{\prime}$
(b) $(\mathrm{A} \cup \mathrm{B})^{\prime}=\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}$
(c) $\mathrm{A}-(\mathrm{B} \cap \mathrm{C})=(\mathrm{A}-\mathrm{B}) \cap(\mathrm{A}-\mathrm{C})$
(d) $\mathrm{A}-(\mathrm{B} \cup \mathrm{C})=(\mathrm{A}-\mathrm{B}) \cup(\mathrm{A}-\mathrm{C})$
(vii) (a) $\mathrm{A}-\mathrm{B}=\mathrm{A} \cap \mathrm{B}^{\prime}$
(b) $\mathrm{B}-\mathrm{A}=\mathrm{B} \cap \mathrm{A}^{\prime}$
(c) $\mathrm{A}-\mathrm{B}=\mathrm{A} \Leftrightarrow \mathrm{A} \cap \mathrm{B}=(\Phi)$
(d) $(\mathrm{A}-\mathrm{B}) \cup \mathrm{B}=\mathrm{A} \cup \mathrm{B}$
(e) $(\mathrm{A}-\mathrm{B}) \cap \mathrm{B}=(\Phi)$
(f) $\mathrm{A} \cap \mathrm{B} \subseteq \mathrm{A}$ and $\mathrm{A} \cap \mathrm{B} \subseteq \mathrm{B}$
(g) $\mathrm{A} \cup(\mathrm{A} \cap \mathrm{B})=\mathrm{A}$
(h) $A \cap(A \cup B)=A$
(viii) (a) $(\mathrm{A}-\mathrm{B}) \cup(\mathrm{B}-\mathrm{A})=(\mathrm{A} \cup \mathrm{B})-(\mathrm{A} \cap \mathrm{B})$
(b) $A \cap(B-C)=(A \cap B)-(A \cap C)$
(c) $\mathrm{A} \cap(\mathrm{B} \Delta \mathrm{C})=(\mathrm{A} \cap \mathrm{B}) \mathrm{A}(\mathrm{A} \cap \mathrm{C})$
(d) $(\mathrm{A} \cap \mathrm{B}) \cup(\mathrm{A}-\mathrm{B})=\mathrm{A}$
(e) $A \cup(B-A)=(A \cup B)$
(ix) (a) $U^{\prime}=(\Phi)$
(b) $\Phi^{\prime}=U$
(c) $\left(\mathrm{A}^{\prime}\right)^{\prime}=\mathrm{A}$
(d) $\mathrm{A} \cap \mathrm{A}^{\prime}=(\Phi)$
(e) $\mathrm{A} \cup \mathrm{A}^{\prime}=\mathrm{U}$
(f) $A \subseteq B \Leftrightarrow B^{\prime} \subseteq A^{\prime}$

Important Points to be Remembered

- Every set is a subset of itself i.e., $\mathrm{A} \subseteq \mathrm{A}$, for any set A .
- Empty set Φ is a subset of every set i.e., $\Phi \subset$ A, for any set A.
- For any set A and its universal set $\mathrm{U}, \mathrm{A} \subseteq \mathrm{U}$
- If $\mathrm{A}=\Phi$, then power set has only one element i.e., $\mathrm{n}(\mathrm{P}(\mathrm{A}))=1$
- Power set of any set is always a non-empty set.

Suppose $A=\{1,2\}$, then $P(A)=\{\{1\},\{2\},\{1,2\}, \Phi\}$.(a) $A \notin \mathrm{P}(\mathrm{A})$
(b) $\{\mathrm{A}\} \in \mathrm{P}(\mathrm{A})$

- (vii) If a set A has n elements, then $P(A)$ or subset of A has 2^{n} elements.
- (viii) Equal sets are always equivalent but equivalent sets may not be equal.

The set $\{\Phi\}$ is not a null set. It is a set containing one element Φ.

Results on Number of Elements in Sets

- $n(A \cup B)=n(A)+(B)-n(A \cap B)$
- $n(A \cup B)=n(A)+n(B)$, if A and B are disjoint.
- $n(A-B)=n(A)-n(A \cap B)$
- $n(A \Delta B)=n(A)+n(B)-2 n(A \cap B)$
- $n(A \cup B \cup C)=n(A)+n(B)+n(C)-n(A \cap B)-n(B \cap C)-n(A \cap C)+n(A \cap B \cap C)$
- n (number of elements in exactly two of the sets $A, B, C)=n(A \cap B)+n(B \cap C)+n(C$ $\cap \mathrm{A})-3 \mathrm{n}(\mathrm{A} \cap \mathrm{B} \cap \mathrm{C})$
- n (number of elements in exactly one of the sets $A, B, C)=n(A)+n(B)+n(C)-2 n(A$ $\cap B)-2 n(B \cap C)-2 n(A \cap C)+3 n(A \cap B \cap C)$
- $n\left(A^{\prime} \cup B^{\prime}\right)=n(A \cap B)^{\prime}=n(U)-n(A \cap B)$
- $n\left(A^{\prime} \cap B^{\prime}\right)=n(A \cup B)^{\prime}=n(U)-n(A \cup B)$
- $n(B-A)=n(B)-n(A \cap B)$

Ordered Pair

An ordered pair consists of two objects or elements in a given fixed order.
Equality of Ordered Pairs Two ordered pairs $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ are equal iff $a_{1}=a_{2}$ and $b_{1}=$ b_{2}.

Cartesian Product of Sets

For two sets A and B (non-empty sets), the set of all ordered pairs (a, b) such that $a \in A$ and b $\in B$ is called Cartesian product of the sets A and' B , denoted by $\mathrm{A} \times \mathrm{B}$.
$A \times B=\{(a, b): a \in A$ and $b \in B\}$
If there are three sets A, B, C and $a \in A$, be B and $c \in C$, then we form, an ordered triplet $(a, b$, c). The set of all ordered triplets ($\mathrm{a}, \mathrm{b}, \mathrm{c}$) is called the cartesian product of these sets A, B and C.
i.e., $A \times B \times C=\{(a, b, c): a \in A, b \in B, c \in C\}$

Properties of Cartesian Product

For three sets A, B and C

- $n(A \times B)=n(A) n(B)$
- $\mathrm{A} \times \mathrm{B}=\Phi$, if either A or B is an empty set.
- $A \times(B \cup C)=(A \times B) \cup(A \times C)$
- $A x(B \cap C)=(A x B) \cap(A \times C)$
- $A x(B-C)=(A \times B)-(A \times C)$
- $(A \times B) \cap(C \times D)=(A \cap C) \times(B \cap D)$
- If $\mathrm{A} \subseteq \mathrm{B}$ and $\mathrm{C} \subseteq \mathrm{D}$, then $(\mathrm{A} \times \mathrm{C}) \subset(\mathrm{B} \times \mathrm{D})$
- If $A \subseteq B$, then $A \times A \subseteq(A \times B) \cap(B \times A)$
- $A \times B=B \times A \Leftrightarrow A=B$
- If either A or B is an infinite set, then $A x B$ is an infinite set.
- $A \times\left(B^{\prime} \cup C^{\prime}\right)^{\prime}=(A \times B) \cap(A \times C)$
- $A x\left(B^{\prime} \cap C^{\prime}\right)^{\prime}=(A \times B) \cup(A \times C)$
- If A and B be any two non-empty sets having n elements in common, then $\mathrm{A} x \mathrm{~B}$ and B x A have n^{2} elements in common.
- If $\neq B$, then $A \times B \neq B \times A$
- If $\mathrm{A}=\mathrm{B}$, then $\mathrm{A} \times \mathrm{B}=\mathrm{B} \times \mathrm{A}$
- If $\mathrm{A} \subseteq \mathrm{B}$, then $\mathrm{A} \times \mathrm{C}=\mathrm{B} \times \mathrm{C}$ for any set C .

Relation

If A and B are two non-empty sets, then a relation R from A to B is a subset of $A \times B$.
If $R \subseteq A \times B$ and $(a, b) \in R$, then we say that a is related to b by the relation R, written as $a R b$.

Domain and Range of a Relation

Let R be a relation from a set A to set B . Then, set of all first components or coordinates of the ordered pairs belonging to R is called : the domain of R, while the set of all second components or coordinates $=$ of the ordered pairs belonging to R is called the range of R.

Thus, domain of $R=\{a:(a, b) \in R\}$ and range of $R=\{b:(a, b) \in R\}$

Types of Relations

(i) Void Relation As $\Phi \subset \mathrm{Ax} A$, for any set A , so Φ is a relation on A , called the empty or void relation.
(ii) Universal Relation Since, $\mathrm{A} x \mathrm{~A} \subseteq \mathrm{~A} x \mathrm{~A}$, so $\mathrm{A} x \mathrm{~A}$ is a relation on A , called the universal relation.
(iii) Identity Relation The relation $\mathrm{I}_{\mathrm{A}}=\{(\mathrm{a}, \mathrm{a}): \mathrm{a} \in \mathrm{A}\}$ is called the identity relation on A .
(iv) Reflexive Relation A relation R is said to be reflexive relation, if every element of A is related to itself.

Thus, $(\mathrm{a}, \mathrm{a}) \in \mathrm{R}, \forall \mathrm{a} \in \mathrm{A}=\mathrm{R}$ is reflexive.
(v) Symmetric Relation A relation R is said to be symmetric relation, iff
$(\mathrm{a}, \mathrm{b}) \in \mathrm{R}(\mathrm{b}, \mathrm{a}) \in \mathrm{R}, \forall \mathrm{a}, \mathrm{b} \in \mathrm{A}$
i.e., $\mathrm{a} R \mathrm{~b} \Rightarrow \mathrm{~b} \mathrm{R} a, \forall \mathrm{a}, \mathrm{b} \in \mathrm{A}$
$\Rightarrow R$ is symmetric.
(vi) Anti-Symmetric Relation A relation R is said to be anti-symmetric relation, iff
$(\mathrm{a}, \mathrm{b}) \in \mathrm{R}$ and $(\mathrm{b}, \mathrm{a}) \in \mathrm{R} \Rightarrow \mathrm{a}=\mathrm{b}, \forall \mathrm{a}, \mathrm{b} \in \mathrm{A}$
(vii) Transitive Relation A relation R is said to be transitive relation, $\operatorname{iff}(a, b) \in R$ and (b, c) $\in \mathrm{R}$
$\Rightarrow(\mathrm{a}, \mathrm{c}) \in \mathrm{R}, \forall \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{A}$
(viii) Equivalence Relation A relation R is said to be an equivalence relation, if it is simultaneously reflexive, symmetric and transitive on A.
(ix) Partial Order Relation A relation R is said to be a partial order relation, if it is simultaneously reflexive, symmetric and anti-symmetric on A.
(x) Total Order Relation A relation R on a set A is said to be a total order relation on A , if R is a partial order relation on A .

Inverse Relation

If A and B are two non-empty sets and R be a relation from A to B, such that $R=\{(a, b): a \in$ $A, b \in B\}$, then the inverse of R, denoted by R^{-1}, i a relation from B to A and is defined by
$R^{-1}=\{(b, a):(a, b) \in R\}$

Equivalence Classes of an Equivalence Relation

Let R be equivalence relation in $\mathrm{A}(\neq \Phi)$. Let a $\in \mathrm{A}$.
Then, the equivalence class of a denoted by [a] or $\{a\}$ is defined as the set of all those points of A which are related to a under the relation R.

Composition of Relation

Let R and S be two relations from sets A to B and B to C respectively, then we can define relation SoR from A to C such that $(a, c) \in S o R \Leftrightarrow \exists b \in B$ such that $(a, b) \in R$ and $(b, c) \in S$.

This relation SoR is called the composition of R and S.
(i) $\mathrm{RoS} \neq \mathrm{SoR}$
(ii) $(\mathrm{SoR})^{-1}=\mathrm{R}^{-1} \mathrm{oS}^{-1}$
known as reversal rule.

Congruence Modulo m

Let m be an arbitrary but fixed integer. Two integers a and b are said to be congruence modulo m , if $\mathrm{a}-\mathrm{b}$ is divisible by m and we write $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$.
i.e., $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m}) \Leftrightarrow \mathrm{a}-\mathrm{b}$ is divisible by m .

Important Results on Relation

- If R and S are two equivalence relations on a set A, then $R \cap S$ is also on 'equivalence relation on A .
- The union of two equivalence relations on a set is not necessarily an equivalence relation on the set.
- If R is an equivalence relation on a set A, then R^{-1} is also an equivalence relation on A.
- If a set A has n elements, then number of reflexive relations from A to A is $2^{n 2-2}$
- Let A and B be two non-empty finite sets consisting of m and n elements, respectively. Then, A x B consists of mn ordered pairs. So, total number of relations from A to B is 2^{nm}.

Binary Operations

Closure Property

An operation * on a non-empty set S is said to satisfy the closure ' property, if $a \in S, b \in S \Rightarrow a^{*} b \in S, \forall a, b \in S$

Also, in this case we say that S is closed for *.
An operation * on a non-empty set S, satisfying the closure property is known as a binary operation.
or
Let S be a non-empty set. A function f from $S x S$ to S is called a binary operation on S i.e., f : $S \times S \rightarrow S$ is a binary operation on set S.

Properties

- Generally binary operations are represented by the symbols * , +, ... etc., instead of letters figure etc.
- Addition is a binary operation on each one of the sets $\mathrm{N}, \mathrm{Z}, \mathrm{Q}, \mathrm{R}$ and C of natural numbers, integers, rationals, real and complex numbers, respectively. While addition on the set S of all irrationals is not a binary operation.
- Multiplication is a binary operation on each one of the sets N, Z, Q, R and C of natural numbers, integers, rationals, real and complex numbers, respectively. While multiplication on the set S of all irrationals is not a binary operation.
- Subtraction is a binary operation on each one of the sets Z, Q, R and C of integers, rationals, real and complex numbers, respectively. While subtraction on the set of natural numbers is not a binary operation.
- Let S be a non-empty set and $P(S)$ be its power set. Then, the union and intersection on $P(S)$ is a binary operation.
- Division is not a binary operation on any of the sets N, Z, Q, R and C. However, it is not a binary operation on the sets of all non-zero rational (real or complex) numbers.
- Exponential operation $(a, b) \rightarrow a^{b}$ is a binary operation on set N of natural numbers while it is not a binary operation on set Z of integers.

Types of Binary Operations

(i) Associative Law A binary operation * on a non-empty set S is said to be associative, if (a $*$ b) $* \mathrm{c}=\mathrm{a} *(\mathrm{~b} * \mathrm{c}), \forall \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{S}$.

Let R be the set of real numbers, then addition and multiplication on R satisfies the associative law.
(ii) Commutative Law A binary operation * on a non-empty set S is said to be commutative, if $a^{*} b=b * a, \forall a, b \in S$.

Addition and multiplication are commutative binary operations on Z but subtraction not a commutative binary operation, since
$2-3 \neq 3-2$.
Union and intersection are commutative binary operations on the power $\mathrm{P}(\mathrm{S})$ of all subsets of set S. But difference of sets is not a commutative binary operation on $\mathrm{P}(\mathrm{S})$.
(iii) Distributive Law Let * and o be two binary operations on a non-empty sets. We say that * is distributed over o., if
$\mathrm{a} *(\mathrm{~b} \circ \mathrm{c})=(\mathrm{a} * \mathrm{~b}) \mathrm{o}(\mathrm{a} * \mathrm{c}), \forall \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{S}$ also called (left distribution) and (boc)*a=(b*a) o (c $* a), \forall a, b, c \in S$ also called (right distribution).

Let R be the set of all real numbers, then multiplication distributes addition on R .
Since, $a .(b+c)=a . b+a . c, \forall a, b, c \in R$.
(iv) Identity Element Let * be a binary operation on a non-empty set S. An element e a S, if it exist such that
$\mathrm{a}^{*} \mathrm{e}=\mathrm{e}^{*} \mathrm{a}=\mathrm{a}, \forall \mathrm{a} \in \mathrm{S}$.
is called an identity elements of S , with respect to *.
For addition on R , zero is the identity elements in R .
Since, $\mathrm{a}+0=0+\mathrm{a}=\mathrm{a}, \forall \mathrm{a} \in \mathrm{R}$
For multiplication on $\mathrm{R}, 1$ is the identity element in R .
Since, $a \times 1=1 \times a=a, \forall a \in R$

Let $P(S)$ be the power set of a non-empty set S. Then, Φ is the identity element for union on P (S) as
$\mathrm{A} \cup \Phi=\Phi \cup \mathrm{A}=\mathrm{A}, \forall \mathrm{A} \in \mathrm{P}(\mathrm{S})$
Also, S is the identity element for intersection on $\mathrm{P}(\mathrm{S})$.
Since, $A \cap S=A \cap S=A, \forall A \in P(S)$.
For addition on N the identity element does not exist. But for multiplication on N the idenitity element is 1 .
(v) Inverse of an Element Let * be a binary operation on a non-empty set 'S' and let 'e' be the identity element.

Let $a \in S$. we say that a^{-1} is invertible, if there exists an element $b \in S$ such that $a * b=b * a=$ e

Also, in this case, b is called the inverse of a and we write, $\mathrm{a}^{-1}=\mathrm{b}$
Addition on N has no identity element and accordingly N has no invertible element.
Multiplication on N has 1 as the identity element and no element other than 1 is invertible.
Let S be a finite set containing n elements. Then, the total number of binary operations on S in $\mathrm{n}^{\mathrm{n} 2}$

Let S be a finite set containing n elements. Then, the total number of commutative binary operation on S is $\mathrm{n}[\mathrm{n}(\mathrm{n}+1) / 2]$.

